
Theoret. Chim. Acta (Berl.) 64, 21-26 (1983) 

THEORETICA CHIMICA ACTA 

�9 Springer-Verlag 1983 

Some Unexpected Relationships Between First, Second 
and Third Derivative Electron Repulsion Integrals for 
Diatomic and Triatomic Molecules 
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It is demonstrated that for diatomic molecules, second and third derivative 
electron repulsion integrals need not be explicitly evaluated. Similarly for 
triatomic molecules an analogous simplification applies to all second deriva- 
tive and 94% of all third derivative integrals. Such higher integral derivatives 
may be determined from intermediate quantities required in the evaluation 
of integral first derivatives, in conjunction with translational and rotational 
invariance properties. This result also has implications for theoretical studies 
of tetra-atomic and larger molecules. Specifically, the evaluation of most 
two- and three-center integral derivatives becomes very efficient. 
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1. Introduction 

The impact of self-consistent-field (SCF) analytic first and second derivative 
methods in quantum chemistry has revolutionized the manner in which molecular 
structures and energetics are determined theoretically. However, the computa- 
tion of two-electron integral derivatives remains a significant factor as far as 
time is concerned in such studies. Kahn [1] has shown how it is in principle 
possible to use the rotational invariance properties of integrals to reduce the 
amount of work that needs to be done in the determination of two-electron first 
derivatives. Taking his work [1] as a starting point, we have recently shown [2] 
how to exploit rotational invariance in the evaluation of second and third 
derivative electron repulsion integrals. Our work also showed how to implement 
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the rotational invariance in an efficient way for first, second and third derivatives. 
In the course of programming these new developments for second derivatives, 
it became apparent that certain classes of second derivative integrals need never 
be explicitly evaluated. We present here a method for the determination of 
two-electron second derivative integrals, for diatomics and triatomics, using first 
derivative integrals only. 

2 .  M e t h o d  

Dupuis, Rys and King [3] have shown that it is possible to evaluate two-electron 
integrals in terms of three two-dimensional integrals, designated Ix, [y, and Iz. 
An integral I is then formed from a product of these three, two dimensional 
integrals such that I = ~,~=I,NI~(v~)./y(V~) �9 Iz(u,~)*, where N is the number of 
quadrature points. To evaluate a derivative of I with respect to a cartesian 
coordinate, one can directly differentiate the individual two-dimensional integrals 
and then form I '  [e.g., I ' =  Y~=l.~tI" (u~) �9 Iy(u~). Iz(u~)*.] Thus a program for 
calculating first derivatives would have I'x (u~), ['y (u~) and I'~ (us) available for at 
least ( n -  1) of the possible n values of x, y and z [n is the number of nuclei 
over which the integral I is centered]. From this we see that certain second 
derivatives are readily determined, e.g. I"  = ~ = 1,N I'~ (u~)l'y (u~)Iz (u~)*. The main 
problem in the evaluation of I"  is to determine the I~ (or I~ or I " ) .  It turns 
out, however, that rotational and translational invariance may be used to obtain 
the two-center and three-center terms I", thus allowing all the second derivative 
integrals to be determined with a first derivative program. Although we have 
restricted our discussion to Rys quadrature methods here, the arguments presen- 
ted apply to any integration scheme that forms the integral I from the product 
of three cartesians functions. In particular the method of McMurchie and David- 
son, [4] in which singly- or multiply-differentiated charge distributions are 
computed and then used in the two-electron integral formulae, would benefit 
in a similar way from the ideas put forth here. 

As an example let us consider a two-center two-electron integral, I, in detail. 
There are 21 second derivatives of I, of which fifteen can be found by translational 
invariance. Let us assume we have the derivatives 

321 321 02I 321 021 021 
3XlOX1' 3xlOyl' 3XlOZl' 3ylOyl' 3y13z1'  3ZlOZl 

(where xl, yl and zl are the cartesian coordinates of center one). Then the 
translational invariance equations to be solved are 

32[ 321 
- -  - -  ( l a )  
3x13x2 3x13xl 

3aI 321 (lb) 
3y13y2 3ylOyl 
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321 021 
= - - -  (lc) 

OZlOZ2 OzlOzl 

02/ 021 (ld) 
C)XlOy2 OXlOyl 

021 021 (le) 

OxlOz2 3xlOzl 

02/ 021 (l f) 
OylOZ2 3y13z1 

021 O2I 
OXzOyl OXlOyl (lg) 

02/ 02/ 
OX2OZ1 OXIOZ1 (lh) 

32I 32I 
= ( l i )  

3y20Zl OylOZl 

02/ 02/ [ 
- ~ OXlOXJ (lj) OX2OX2 OX13X2 

02I = 02I ( -- OylOYl] (lk) 
Oy2Oy2 3ylOy2 

= 32/ ~ (11) 021 _ 021 ( 

3Z23Z2 3ZlOZ2 \ 3ZIOZI] 

= 02I ~ ( l m )  02----~I 02~ ( Ox13y 1] 
Ox23Y2 Ox23yl 

02/ .'~ (ln) 021 -- c321 k (=OXac3Zl] 
OX 20Z 2 3X 20Z 1 

O2/ 02/ 02/ .~ (1o) ( 
= \ = Oy10zl] Oy2Oz2 Oy2OZl 

where x2, yz and z2 are the coordinates of the second center in the integral. 

These fifteen equations demonstrate the fact [5] that it is possible to avoid the 
explicit calculation of integral derivatives involving the differentiation with 
respect to the coordinates of one of the atomic centers. That is, for two-center 
integrals, by starting from the six second derivatives with respect to one nuclear 
center only we generate the remaining fifteen. 

Of the six second derivative integrals discussed above, only one is unique. As 
we have stated already, this may be chosen as 

O2I 021 32I 
o r - -  

OXlOyl' OXIOZ1 OylOzl 



24 M.A. Vincent and H. F. Schaefer III 

if only first derivatives are to be explicitly computed. Let us choose it to be 
32[/3x 1 3y 1. Now the expression for the rotational invariance equations for second 
derivatives are given in our previous paper [2] (Eq. (4)). A possible set of these 
equations is 

3I 32I 02I 
+ (Xl-X2) - -  ( Y l - Y 2 ) - -  (2a) 

3yl 3Xl 3yl 3Xl 3Xl 

3 ~ x  

3Xl 

36I~y 32I 32I 
- - =  (yl-Y2) - -  ( Z l - Z 2 ) - -  (2b) 
3xl 3Xl 3Zl 3Xl 3yl 

3SI~x 32I 32[ 
- -  = ( x  1 - ( z  1 - z 2 )  - -  ( 2 c )  
3yl x2) 3yl 3zl 3yl 3xl 

33[yx = (X 1 321 3[ 321 (2d) 
3yl --X2) 3yl 3yl 3Xl (yl--Yz) 3yl 3X---------~1 

3~Izx 32[ 3I 32[ 
Oz---T = (xl-xz)  3zl 3zl Oxl (zl-z2) 3Zl 3x-------~11" (2e) 

By solving these Eqs. (2a-e) and then using Eqs. ( la-o) we can obtain all the 
second derivatives of L For the sake of simplicity, relative to our earlier paper 
[2], we have not summed over the integrals that make up the shell block to 
which I belongs, in Eqs. ( la-o)  and (2a-e). 

For three-center two-electron integrals there are 45 second derivatives, 24 of 
which may be found by translational invariance and 15 by rotational invariance. 
The six integrals to be evaluated may be chosen such that they involve the 
product of first derivatives only. A possible set being 

321 32I 321 021 32I 32I 

3Xl 3yl 3Xl 3y2 3Xl 3Z1 3y2 3X2 3y2 3Z1 3Z1 3X2 

These may then be substituted into the three equations represented by Eq. (4) 
of our earlier paper [2], with yr =x l ,  y2, zl, x2, yl and z2. Thus it is unnecessary 
to explicitly determine any of the three-center, second derivative, two- 
dimensional integrals. For four center two-electron integrals, however, at least 
three true second derivatives have to be calculated, one for each of the two 
dimensional integrals, Is. 

3. Third Derivatives 

Kahn [1] has noted in his paper that for the first derivatives of a two-center 
two-electron integral one only needs to determine one derivative. We have noted 
a similar thing for second derivatives, and as one might expect the same carries 
over to third derivatives. Thus for diatomic molecules both second and third 
derivative integrals are obtained from only the first derivatives of the two 
dimensional integrals Ix, Iy, Iz. From what we have said 32I/3Xl 3y 1 3Z1 would 
be an obvious choice. 
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In the case of a three-center  two-electron integral there are a total of 165 third 
derivatives, of which 109 may be found by translational invariance [2]. Of the 
remaining 56 third derivative integrals, 46 may be obtained via the rotational 
invariance equations. The remaining 10 third derivatives may be found by using 
both the first and second derivatives of the two-dimensional integrals. However,  
the third derivatives of the two-dimensional integrals need never be evaluated. 

4. Concluding Remarks 

The above analysis is also of considerable value for tetra-atomic and larger 
molecules. This is because the fraction of three-center  integrals is substantial 
for such molecules. Consider, for example, a molecule composed of first row 
atoms (B, C, N, O, and F), each described by a double zeta basis set, ten functions 
per atom. Table 1 then gives the number of electron repulsion integrals of each 
type as a function of the number of atoms comprising the molecule. 

Table 1 shows that for the specimen tetra-atomic molecule, only 8.9% of the 
two-electron integrals are four-center in nature. In fact, one must go to an eleven 
atom molecule (110 basis functions) before the four-center integrals form a 
majority. For the first derivative integrals, the molecule must include nine atoms 
before 50% of the integrals are four-center in nature. And even for the second 
derivative integrals, seven centers are required before the four-center terms 
predominate. Thus the relationships described here should be of codsiderable 
value for molecules larger than triatomic. Nevertheless the great simplification 
of the computation of all second and most third derivative integrals for triatomic 
molecules is the primary result of the present investigation. 
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